Future directions of Distributed Systems

Future Trends in Applications and Technology

Machine learning

- Machine learning enables extracting models from large data sets.
- > Application of machine learning will continue to expand.
- The amount of data and computation required to train image classification problems has grown by three orders of magnitude over the past eight years.

Data analysis

- Data sets will continue to grow in scale, due to higher resolution, higher speed and lower cost of devices, but also by the increased connectivity of individuals and institutions.
- Benefits of data analysis in economical areas (e.g. Individual advertisement) but also scientific analysis (e.g. biosignatures and health record for large populations).
- Data amount might potentially rise into the zettabytes.

Simulation

Scientific simulation has expanded beyond traditional HPC simulations to also include high-throughput simulation campaigns to build large sets of simulated results, such as the Materials Genome Initiative and climate modeling studies" (Stoller et al., 2019).

Beyond Digital Computing

End of Moore's Law is predicted by 2025, so other opportunities for expanding computation power is needed.

Case study: Distributed architectures in Agriculture 4.0

- Argriculture 4.0: Smart Argriculture or Smart Farming
- Collecting and processing of huge amount of data through IoT for optimising input and output.
- Less concerns of privacy but increased priority of confidentiality.

Use cases:	Challenges:
Water Management	User Proximity
Plant Diseases	Latency & Jitter
Crop Management	Network stability
Livestock	Computation / throughput
	Reliability
	Scalability
	Cost-Effectiveness
	Maintainability

Case study: Distributed architectures in Agriculture 4.0

- Architectures:
- > Batch Architecture vs. Real-time Architecture
- Distributed architectures:
- Fog Computing
- Mobile Edge Computing
- Trends:
- Microservice Architecture
- Data Lake Architecture
- Osmotic Computing
- Dew Computing
- Blockchain
- ▶ Transformation to Agriculture 5.0 \rightarrow Robot integration and machine learning

References

- Debauche, O., Mahoudi, S. Manneback, P. & Lebau, F. (2021) Cloud and distributed architectures for data management in agriculture 4.0: Review and future trends. Journal of King Saud University. Available from: https://www.sciencedirect.com/science/article/pii/S1319157821002664 [Accessed 05 June 2022].
- Stoller, S., Carbin, M. Adve, S. Agrawal, K., Belloch, G., Stanzione, D., Yelick, K. & Zaharia, M. (2019) Future Directions for Parallel and Distributed Computing. NSF Workshop Reports. Available from: https://people.eecs.berkeley.edu/~yelick/papers/SPX_2019_Workshop_Report.pdf [Accessed 06 June 2022].
- Martos, V., Ahmad, A., Cartujo, P. & Ordonez, J. (2021) Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences. 11(13):5911. Available from: https://www.mdpi.com/2076-3417/11/13/5911 [Accessed 06 June 2022].